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The Zakharov integral equation for surface gravity waves is modified to include 
higher-order (quintet) interactions, for water of constant (finite or infinite) depth. 
This new equation is used to study some aspectsof class I (4-wave) and class I1 (&wave) 
instabilities of a Stokes wave. 

1. Introduction 
Our understanding of the nonlinear dynamics of deep-water gravity waves has 

grown substantially in recent years. We feel that the lion’s share of this progress 
should be attributed to the staff of the TRW Fluid Mechanics Department. Most of 
their findings are summarized in an extensive review article by Yuen & Lake (1982), 
which served as our main reference. Much of this progress is based on applications 
of the so-called Zakharov equation which was originally derived by Zakharov (1968) 
for infinitely deep water. Zakharov & Kharitonov (1970) extended the derivation to 
arbitrary water depth, but didn’t present the interaction coefficients. For the sake 
of a comprehensive discussion, we re-derive Zakharov’s equation for finite water 
depth (in $2) and show its relations to the cubic Schrodinger equation and to 
Hasselmann’s nonlinear interaction model (in $3). It is our opinion that the 
Zakharov equation is superior to all other existing approximate models as far as 
class I interactions are concerned. 

The term ‘ class I interactions ’ refers to nonlinear interaction processes at  the lowest 
possible order ; for surface gravity waves this occurs at third order in the nonlinearity 
parameter 6. Generally speaking, class I interactions require the coexistence of 
resonating, or nearly resonating, wave quartets. The time scale of class I interactions 
is e-2 P where P is a typical wave period. 

The structure of the surface-gravity-wave dispersion relation does not enable 
nonlinear interaction at  shorter timescales (8- l  P) which occur in many other 
physical systems (e.g. capillary waves). 

While class I interactions are basically four-wave interactions, the special case 
where one of the waves is taken into account twice so that only three waves are 
considered has attracted much attention. These cases which lead to what sometimes 
is called Benjamin-Feir instabilities, display many of the features of the more general 
quartet interaction. Interactions including a smaller number of waves - as two waves 
each taken into account twice, or one wave taken into account four times - are also 
possible, but display a degenerated type of interaction which manifests itself in 
Stokes-type second-order corrections of the frequency (see Longuet-Higgins & 
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Phillips 1962). Numerical linear stability analysis of the exact finite-amplitude 
Stokes wave, by McLean (1982a, b), as well as experimental evidence by Su et aZ. 
(1982) and Su (1982), reveal the importance of class I1 interactions, which are 
basically quintet interactions. These, much-less studied interactions, occur at fourth 
order in E and have a typical timescale of E - ~ P .  Nevertheless, for high-enough 
steepnesses McLean'a study, as well as the earlier work of Longuet-Higgins (1978), 
show that class I1 instabilities become dominant. Here again, three waves - one of 
them is taken into account three times - form a nearly resonating quintet and display 
many interesting features. In the second half of $2 we extend the derivation to fourth 
order and derive a modified form of the Zakharov equation which accounts Ax both 
class I and the higher-order, class 11, interactions. 

In $4 we use this equation to study the linear stability of a uniform wavetrain. 
The solution of certain long-time evolution problems is under way and will be 
reported at  a later stage. 

2. The governing equations 

with a free surface are 
The equations governing the irrotational flow of an incompressible inviscid fluid 

VZ$ = 0 ( - h  < z < q(x,t)), (2.1) 

(2.2a, b) 

(2.3) 

where $ is the velocity potential, q is the free surface and g is the gravitational 
acceleration. The horizontal coordinates are (xl, 2,) = x, the vertical coordinate z is 
pointing upwards, h is the mean water depth, and t is the time. 

The free-surface boundary conditions (2.2) are rewritten in terms of #P and 
WS = (8#/8z)\z-7,  the velocity potential and the vertical velocity component at the 
free surface, respectively : 

00 -'s[ @(kl,t)&s(k,, t) 6(k-k,-k,)dk1dk, 471. --m 
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where the two-dimensional Fourier transform of a function f ( x )  is given by 

1 “ o  
j (k)  = J f ( x )  e-ik*x dx, 

-a, 

and the Dirac &function is defined as 

Taking the Fourier transform of the Laplace equation (2 .1 ) ,  and satisfying the 
boundary condition (2.3) at the bottom gives 

&k, 2, t )  = WG ch (lkl ( z+  h) ) ,  (2 .6 )  

which enables one to write $s and ws in terms of $(k, t )  and q ( x ,  t )  as follows: 

$“x,t) = - r &(k, t )  [ch (lkl h) ch (lkl 0 )  
2n: --a, 

+sh (lkl h) sh (lkl q(x,  t))]eik’”dk, ( 2 . 7 ~ )  

+sh((lklh) c h ( I k l q ( ~ , t ) ) ] e ~ ~ ’ ~ d k .  (2 .7b )  

The next step in the derivation is to express 6Y as a function of r^ and @. This is the 
first step which requires an additional physical assumption. Assuming that lklq is 
small, we pursue the following procedure : (i) replace sh (lkl q) and ch (lkl q), in (2 .7a ,  b), 
by their Taylor-series expansions up to order (lkl q),; (ii) express q by means of its 
Fourier transform $; and finally (iii) take the Fourier transform of ( 2 . 7 a ,  b) : 

$s(k, t) = &(k, t) ch (lkl h) +- 

x ~(k,,t)~(k,,t)~(k,,t)~(k-k,-k,-k3)dkldk,dk3 

x S(k- k, - k, - k,- k,) dk, dk, dk, dk,, ( 2 . 8 ~ )  

zV(k, t )  = lkl &(k, t )  sh (lkl h) 

x 6(k - k, - k, - k, - k,) dk, dk, dk, dk,. (2 .8b )  
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Inverting ( 2 . 8 ~ )  iteratively, in order to obtain 6 = 6($s), and substituting the result 
into (2.8b), yields 

&(k, t )  = IkJ th (lkl h) qP(k, t )  

x S(k- k, - k, - k, - k4) dk, dk, dk, dk,. (2.9) 

The kernels S(l)(k, k,, k,, k,), S(,)(k, k,, k,, k,, k4), as well as other kernels, which 
appear throughout the derivation, are given in the Appendix. Substituting thS from 
(2.9) into (2.5a, b) ,  multiplying ( 2 . 5 ~ )  by [g/(Zw(k)];, and (2.5b) by i[wfk)/(2g)]:, where 

4) = [9 lkl th (lkl Wit? (2.10) 

adding these equations together, and defining the new complex variable 

yields the following equation : 

b,(k, t )  + io(k) b(k, t )  + i Z, Vicn)(k, k,, k,) C,, dk, dk, 
n - i  - w  

+ i  ssr Wcn)(k, k,, k,, k,) C,, dk, dk, dk, 
n - 1  -aJ 

where 
\ /  1 1 \ 

where * denotes the complex conjugate, and Z&-n ,  IT&,, for 1 < n are defined to 
be 0 and 1 respectively. 

The relations between 7, qF and the complex ‘amplitude spectrum’ b are 

(2 .12~)  

(2.12b) 

We &ssume that the wave field can be divided into a slowly varying (in time) 
component B and small rapidly varying components B’, B”, B and that most of the 
energy in the wave field is contained in B. These assumptions permit one to write 

b(k, t )  = [sB(k, t,, t,) +s2B’(k, t ,  t,, t,) +s2B”(k, t ,  t,, t,) 

+e4B”’(k,t, t,, t,)]e-iw(k)t, (2.13) 
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where E is a small parameter representing the magnitude of nonlinearity, and the slow 
timescales are defined by t ,  = c2t, t3  = e3t. The omission of the slow time t ,  = st from 
(2.13) results from the fact that resonating triads do not exist for surface gravity 
waves. Substituting b, from (2.13), into (2.11) and arranging the terms according to 
their order in e yields the following results. 

Order e is satisfied identically. 
Order e2 gives an equation for B' : 

. aB' 
1 - = JJ;, { ~ t ) ~ ,  8, 8, 6,- - ei(w - w 1  + ~ ( 2 )  0.1 .2  B: 8, 8, + - ei(o+w1 - W e ) t  

at 

+ V t i ,  8: 8,* So + + ei@ +wl + dk, dk,, (2.144 

where we have introduced a compact notation in which the arguments ki in V, 8, 
6, w and in other functions in the sequel are replaced by subscripts i, with the subscript 
zero assigned to k. Integrating ( 2 . 1 4 ~ )  with respect to t and keeping t , ,  t3 fixed gives 

1 

ei(w +wl - w e )  t e i ( w + o l + w e ) t  

w +wl -w2  w + w1 +w2 

(2.14b) 

The constant of integration, which corresponds to the initial phase, has been set to 
zero without loss of generality. 

Order e3 gives the following equation : 

(2.15) 

The above equation consists of terms of two types; those that depend on the fast 
time t ,  and those that do not. This enables us to split (2.15) into separate equations: 

. aB" !JJm ~ ' ~ ~ 1 , 2 , 3 ' 1 ' 2 ' 3 6 0 - 1 - 2 - 3  ei(w -wl - W E  - w s )  t 

at -m 
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Here we have made use of the fact that the only exponent of e that may become zero, 
under the restriction of the &functions, is the one in the second term in the right-hand 
side of (2.15). This fact is directly related to the definition of a nearly resonating 
quartet : 

k+kl-k2-k3 = 0, I w + o , - - o , - - w , ~  < O(e2) .  (2.18a, b) 

Equation (2.16) is the so-called Zakharov equation, with the kernel 

G;\, 2, = (F, 2, 
for near resonance quartets, 
otherwise, 

(2.19) 

used as a mathematical model for class I nonlinear interactions. Integrating ( 2 . 1 7 ~ )  
with respect to t gives the following result for B : 

ei(w--ol -w2-w3) t 

B" = -sir - f f i  {%!I, 2 , 3  '1 '2 B3 1- 2 -3  w -wl - w2- w, 

Order e4: 

ei(W +o, - w ,  -03 - lo4) t + '$:\, 2.3.4 ': '2 '3 '4 ' 0  + 1 - 2 - 3 - 4 

+ Oh:\, 2.3.4 ': ': '3 '4 ' 0  + 1 + 2 - 3 - 4 

+ 'g\, 2,3 ,4  ': Ir: Ir$ '4 'O+l+ 2 + 3- 4 

ei(o +o, +o, -wg -04) t 

e i (w+o ,  +o, +03-w4) t 

(2.20) 

In order to split (2.20) appropriately into two separate equations, one for a8 /a t3  and 
the other foi aB'/lat, which becomes relevant only in sextet interactions, we make 
use of the fact that only the second and third integrands in (2.20) enable resonating 
quintets. Similarly to (2.18), the nearly resonating quintets are defined by 

k+kl-k2-k3-k4 = 0, (Q+Sdl-Q2-Sd3-Q41 < 0 ( € 3 ) ,  (2.21a,b) 

where Sdj,  the 'Stokes-corrected' frequencies, are given by 

(2.21 c) 

The Stokes corrected frequencies are obtained by solving (2.16) for degenerated 
interactions, namely 'quartets ' formed by two waves, each taken into account twice. 
These corrections become necessary at the order of derivation considered here. 
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Defining 
v 

g R 2 )  o ,  ,, ,, 3, for nearly resonating quintets, ) (2.22a) 
otherwise, '8, 2 , 3 , 4  = ( 0 

) (2.22b) 
- ( Q:\, ,, 3, for nearly resonating quintets, 

0 otherwise, a, 3 , 4  - 

we obtain 

dk, dk, dk3 dk,. 

(2.23) 

Finally, the two orders, (2.16) and (2.23), are combined into a single equation for 
B = EB: 

I ei(w+wl +w, -w3 -w + '?\, 2 ,3 ,4  ': ': '3 '4 '0 + 1 + 2 - 3 - 4 

e i (w+W1-We-W3)  dk, dk, dk3 
. aB '-'= l]jm e\, 2 . 3  B: B2 B3 '0+,-2-3 at --m 

dk, dk, dk3 dk, e i ( W  + w1 - w2 -lo3 -lo4) B: B2 B3 B4 '0+1-2-3-4 

r r r r - m  

+ J J J J ~ ? ; , 2 , 3 , 4  B1*Bz* B3 '4'O+1+2-3-4 ei(W+wi+%-%-w4)t dk, dk, dk3 dk,. 

(2.24) 

Equation (2.24) is a modification of the Zakharov equation that accounts for higher- 
order interactions. 

3. Comparison of the Zakharov equation with other model equations 

. aB(k, t) 

Denoting E' by B, we rewrite (2.16) as 
03 

1p = JJs dkl *Zdk8 f12) (k, k,? k2, k3) B*(k,, t ,  B(k2, t ,  B(k3, t, 
at --m 

x '(k + k, -k, - k3) ei(W+Wl-%-%)t (3.1) 

The first-order free-surface elevation is related to B through ( 2 . 1 2 ~ )  and (2.13), and 
is given by 

~ ( x ,  t )  = -J l W  r+)'(B(k, t)  ei(k*x-wt) + c.c.1 dk. 
2n - 

Equation (3.1) is the now well-known Zakharov equation, generalized for water 
of any constant depth. The fact that (3.1) is valid for finite depth affects only the 
expressions for w(k)  and f12)(k, k,, k,, k3), which become depth-dependent. 

The purpose of this section is to show the connections between the Zakharov 
equation and other model equations, as well as to check our depth-dependent 
expression for Tt2). Note that for h+ 00 our equation (A 5c) for T(2) gives the same 
result as does Appendix A of Crawford et al. (1981). This result is different from that 
given in Yuen & Lake (1982) (even after corrections of minor misprints). This 
apparent discrepancy is related to the special, almost-symmetric (with respect 
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to k,  and k,) structure of the Zakharov equation. This structure allows some 
freedom in the choice of T@),  i.e. Tc2) (k ,k , ,k , ,k , )  can be replaced by 
aT(,)(k,k, ,k, ,k,)+ (1 -a) T(2)(k,  k,, k,, k , ) ,  with arbitrary a, without altering the 
value of the integral on the right-hand side of (3.1). Any T(,) ,  obtained in some 
legitimate derivation, can be made symmetric in k,, k ,  by choosing a = 0.5. This 
symmetric F2), denoted by T ,  is a uniquely defined function of k ,  k,, k,, k ,  and h 
and will be used in the sequel. 

3.1. Relation to Hasselmann’s energy-transfer model 

The energy-transfer equation for a finite-depth gravity-wave spectrum, originally 
obtained in Hasselmann (1962), was rederived by Herterich & Hasselmann (1980). 
This later paper served as a reference for the verification of the expression (A 5 c )  for 
T .  By reasonings similar to those in Longuet-Higgins (1976), but starting from the 
Zakharov equation (instead of the cubic Schrodinger equation, used by Longuet- 
Higgins) the following energy-transfer equation is obtained : 

+C(k, ) ) ]&(k+k, -k , -k , )  &(w+w,-w,-w,)  dk,dk2dk3, (3.3) 

where the wave-action spectrum C = JBI2. 
For strict resonance conditions, which are implied by the two &-functions in (3.3), 

T is also symmetric in its two first arguments k and k,. Herterich & Hasselmann’s 
F(k, t )  is given by w(k) C(k, t)/4g.n2, and their interaction coefficient D is given by 

(3.4) 
1 6x2 

D(k3, k2 ,  k , )  -- (ww1 ~2 ~ 3 ) :  T(k,  k , ,  k2, k3) 
39 

for resonating quartets. 

check of the rather lengthy algebra involved in the derivation of both models. 
The above identity (3.4) has been verified numerically, and thus serves as a mutual 

3.2. Relation to the nonlinear Schrodinger equation 

The derivation here follows the lines of Zakharov (1968), who showed that, in the 
case of infinitely deep water, the cubic Schrodinger equation is a particular case of 
the more general Zakharov equation. In  the case of finite water depth, the value of 
T(k,  k,, k,, k3) ,  in the limit when k,,  k,, k ,  tend to k and h is fixed is not unique. In 
order to provide a better grasp of this nonuniqueness, we include here an outline of 
the derivation of the finite-depth nonlinear Schrodinger equation. 

Restricting the analysis to narrow spectra around k,  = (k , ,O) ,  we rewrite all 
wavenumbers ask, = k, + wr, yt = (y+i, At)  and IW(/k,  Q 1. Introducing a new variable 
A(w,  t )  = B(k, t )  e-i[w(k)-w(ko)lt into (3.1) gives 

r r r m  
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Equation (3.2) is then expanded to the lowest order in the spectral width 

where the complex wave envelope a(x ,  t )  is the inverse Fourier transform of A(v ,  t ) ,  
multiplied by the coefficient (2w(k,)/g)k The frequency difference on the left-hand side 
of (3.5) is replaced by its Taylor-series expansion up to the second order in the spectral 
width : 

(3-7) o(k) - w (k,) = cg $ + 5 h2 + + C p  + O( lw Is), 
2kO 

whl re cg = awo/ak,, c; = a2w,/ak: and w: = gko th ( k ,  h). Multiplying (3.5) by (2o,/g)t 
and taking its inverse Fourier transform yields 

One can show that the Taylor-series expansion of T, to the lowest order in the spectral 
width, is given by 

w,, k,, k,, k,) = T I  + T I ,  = TI11 + T I V ,  ( 3 . 9 ~ )  

where 

T I  = & [ 9 ~ ~ - 1 0 0 ~ + 9 ] ,  32x u u = th(k,h), (3.9b) 

TI, = -- 
32x2u 

(3 .94  

TIII = - + - [ K - 1 2 + l 3 g 2 - 2 g 4  32x u cr2 1 , (3.9d) 

Substitutiqg (3.9d, e )  into (3.8) gives 

(3.10) 

where 
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Note that for any finite depth and for vj--wl+O,j = 2,3 ,  the values of T,,, T,, and 
that of the integrand in (3.1 1 c )  depend on angles O,, the 'directions' of approach to 
the limit, where 

11.j - 11.1 cosB, = lim 
yj+y, Ivj- v1l. 

This non-uniqueness disappears for infinitely deep water. 

a solution of the following boundary-value problem 
Regarding the integral I, (3.11c), one can show that I = i3~o/i3xl~z-o, where do is 

(3.12 a) 

(3.12 b) 

(3.12~) 

Thus do appears to be the mean-flow potential. The system of equations (3.10) and 
(3.12) was obtained by Iusim & Stiassnie (1982) using a multiple-scale approach. In 
the particular case where the water depth is shallow compared with the group length 
th (h lv j -  v,l) can be replaced by hlv,- vll and the set of equations given by Davey 
& Stewartson (1974) is recovered. For water of infinite depth, Stiassnie (1984) 
extended the analysis to one order higher in the spectral width, and rederived 
Dysthe's (1979) set of equations (sometimes called the modified Schrodinger 
equation); see also Janssen (1983). The fact that the fourth-order (in the wave 
steepness) modified Schrodinger equation is a particular case of the third-order 
Zakharov equation (3.1) is less surprising if one realizes that all the fourth-order terms 
in the modified Schrodinger equation emerge as a result of the narrow-spectral-width 
assumption, and none of them is of fourth order in the wave amplitude itself. 

4. Linear stability of a uniform wavetrain 
Following Crawford et al. (1981), this section deals with the mathematical 

formulation of one of the simplest possible non-trivial nonlinear interaction problems 
and its linearized (short-time) solution. The smallest number of wavetrains required 
to enable significant nonlinear interaction is three for class I as well as for class I1 
interactions, In  what follows, we denote these 3 waves by the subscripts a, b and c. 
For anything exciting to happen, these 3 waves have to form a nearly resonating 
'quartet' for a class I interaction, and a nearly resonating 'quintet' for a class I1 
interaction, see (2.18) and (2.21) respectively. 

To form a 'quartet ', or a 'quintet ', out of three waves, one can 'count ' one of the 
waves ka twice for class I interactions, and three times for class I1 interactions. 

The governing equations for class I interactions are a discretized form of (3.1) : 
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(4.1 b) .dBb - - (2Tbaba IBa12 + Tbbbb IBbI2 -k 2Tb,bc lBc12) B b  + Gcaa BZ Bi ePi*lt, dt 

(4.1 c )  .dBC - - (2qaCa P a l 2  + 2qbCb IBb12 -k q,,, lBc12) Bc + %baa BZ Bi e-i*It dt 

where 8, = 2wa-wb-wc. 
For class I1 3-wave problems, which do not satisfy (2.18), (2.24) similarly gives 

i-- dBu - (Tau,, IBaI2 -k 2Tabab lBb12 + 2Tacac IB,.l2) B, + 2 UfLabc (B,*)'Bb eiaIIt , ( 4 . 2 ~ )  dt 

. d B  
1 b =  dt 

. dB 
1 e =  

dt 

(2Tbaba IBa12 + Tbbbb IBbl2+ 2 q e b c  lBc12) B b  + Ugiaa  BZ Bi e-i*IIt, (4.2 b) 

(2qaca IBul2 +2&b IBbI2 -k q c c c  lBc12) Bb-k U z i a a  BZ Bi e-'"IIt, ( 4 . 2 ~ )  

where 8,, = 3wa-wb-wc and UFiabc is assumed to be symmetric with respect to b 
and c. 

To complete the mathematical formulation of either of the above systems of 
equations, (4.1) or (4.2), one has to specify the following initial conditions: 

Ba(o) = ba, Bb(o) = bb, = 

where the relation between B;, and the actual physical amplitude a;, is 

One can assume that the initial amplitude of one of the waves, which is called the 
'carrier' and denoted by the subscript a, is much larger than the amplitudes of the 
other two waves, denoted by b and c,  to be called the 'disturbances': lbbl, lb,l < lbal. 
Only linear terms in the disturbances Bb, B, are retained, so that the carrier wave 
remains unaffected in this short-time analysis, and is given by B, = b, e-iTaaaalbalgt ; 
b, is assumed to be real without loss of generality. 

4.1. Class I instabilities 
The wavenumbers of the carrier and the disturbances are 

ka = k0(1,0), kb = ko(l+p,q), k, = kO(1-p; -q ) ,  ( 4 . 3 ~ ~  b, C) 

so that ( 2 . 1 8 ~ )  is satisfied identically. The linearized version of (4.1 b, c) is 

( 4 . 4 ~ )  

, (4.4b) d B  * b2 e--ifiI t i C =  
2%aca b: Bc + %baa Bb a dt 

where a, = wI + 2Taaaa bi. 
Assuming a solution of the form 

B - b -i(0.5fi,+d,)t B = b e-i(o.5fi1-61)t 
b -  b e  t c c  

one can show that 6, must be given by 

= (Tbaba-Tcaca) bi*D!? ( 4 . 5 ~ )  
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P 

I I 1 1 I ( b )  I 

/------- 
4 1.0 

0.5 

0.5 1 .o 1.5  2.0 2.5 

P 

0 

FIQURE 1 (u, b) .  For caption see facing page. 

where 
Q = [0.5& - ( ~ ~ 6 ~  + T,,,,) %12- Gcaa Tcbaa %. (4.5b) 

Positive values of D,(p,  q )  correspond to stability regions in the (p, q)-plane and vice 
versa. The curves D, = 0 form the stability boundaries, and the point where D,  attains 
its minimum is called the most-unstable mode. The value of crI = ( - DI/gk,): for the 
most-unstable mode is called the maximum growth rate. 
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q 1.0 
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I I I I I 

0.5 1 .o 1.5 2.0 2.5 

P 
FIGURE 1. Bands of instability for k, h = 2. The instability boundaries are given by the solid lines 
and the points of maximum growth rate are labelled by x . McLean’s results are marked by the 
dashed lines and by 0 .  (a) k,a, = 0.195, (ka) ,  = 0.2; (b) 0.326, 0.35; (c) 0.41, 0.35. 

4 

-1 .o -0.5 0 0.5 1 .o 1.5 2.0 2.5 

FIGURE 2. Bands of instability for k, h = 0.35, k,a, = 0.04 and notation. 
P 

4.2. Class 11 instabilities 

For this case the carrier wavenumber k, and kb are still given by (4.3a, b) ,  but 

k, = k,(2-p, -q), (4.6) 

so that (2.21~4) is now satisfied identically. 
The linearized short-time version of (4.2b, c)  is 

(4.7a) 

(4.7b) 

B L M  143 3 
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1 I A I I 

where a,, = Q,, + 3Taaaa b i .  Assuming again a solution of the form 

B, = bb e-i(o.5fi,,+~II) t B = b, e-i(o.5fiII-8,,) t 

one finds that 

'11 = (Tbaba- ?a,,) bi k &, 

D I I =  [O.~Q,I - (Tabs + T,aca) bi12- uf;",',aa uZ,"d,aa b t .  

( 4 . 8 a )  

( 4 . 8 b )  

The stability boundary and maximum growth rate for class I1 interactions are 
obtained from ( 4 . 8 6 ) .  
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th k,h 
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FIGURE 3. Summary of results for class I instabilities: (a) isolines of p ,  (for 6; = 0, p ,  = 0); (b) 
isolines of q, (for either ee = 0 or thk,h = 1 ,  g, = 0);  (c) isolines of lOuf, the maximum growth 
rate (for 6; = 0, crf = 0). 

4.3. Results 

In  figure 1 we show the class I and class I1 instability regions (as shaded zones) 
for k, h = 2. The solid lines represent the calculated results and the dashed curves 
are those of McLean (19826, figures 2 b ,  c ) .  I n  figure 1 (a) ,  k,a, = 0.195 (where a, is the 
first-order amplitude of the carrier in Stokes’ expansion), which is equivalent to  
(ka),  = 0.2 (the subscript M stands for McLean). As a conversion formula we used 
the following expression : 

24ch6 (k, h) + 3 
= k, a, + 64sh6( k, h)  (k, + O(k ,  (4.9) 

given by Skjelbreia & Hendrickson (1961). In  figure 1 (6) k,a, = 0.326 (corresponding 
to (ka), = 0.35). 

The locations of the maximum growth rates (p,, q,), (p,,, qII) for class I and class 
I1 instabilities respectively are marked by x for our results and by a dot for McLean’s 
results, and their numerical values, as well as those of the maximum growth rates 
r,, bII, are given in the figures. The overall agreement in figure l ( a )  is quite 
satisfactory. The actual amplitude in this figure is 47 yo of the theoretical maximum 
(Cokelet 1977). For smaller steepnesses the agreement becomes even better. On the 
other hand, for very steep waves (in figure 1 (6) the actual amplitude is 82 yo of the 
theoretical maximum amplitude) the agreement is less impressive. Nevertheless, a 
somewhat better agreement is obtained if we compare McLean’s results for 
(ka) ,  = 0.35 with the artificially amplified value a, k, = 0.41 (see figure 1 c). A similar 
trend in the degree of agreement between the results of the present model and those 
of McLean was obtained for several other water depths. Generally speaking, the 
present model gives good quantitative results for amplitudes which are less than 
about one-half of the theoretical maximum. For very steep waves the present model 
loses its quantitative validity, but still predicts the general qualitative features. 

Figure 2, which is quite typical, is used to  demonstrate some general features as 
well as clarify some of the terminology which is used later. 

3-2 
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01 I I I I I I 

0.35 0.4 0.5 0.6 0.7 0.8 0.9 1 

(b ) 

th koh 

FIGURE 4. Summary of results for elass I1 instabilities; ( a )  isolines of q I I ;  (b )  isolines of LOa,,. 

One can see that a certain similarity exists between class I and class I1 instability 
regions. Both can be regarded as consisting of two domains: a wider band at  lower 
values of p and usually a much narrower region a t  higher values of p .  The first region 
will be referred to as the main region, and the other as the secondary instability region. 
The difference between class I and class I1 instability regions is that for class I the 
two domains are usually disconnected while in the case of class I1 they are bound 
by a line of infinitesimal thickness. The secondary regions sometimes disappear 
completely, and for class I, the instability region in these cases terminates at  some 
q > 0 (compare with Crawford et al. (1981) for infinite water depth). 

The disconnection between the main and secondary regions for class I, as well as 
the disappearance of the secondary region in some cases, are probably results of the 
order of the present perturbation expansion, since they are not observed in McLean 
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(1982a, b ) ,  who used the full equations. However, the present results seem to indicate 
that the instabilities for these cases are of higher order. 

Figure 2 shows the three wavenumber vectors k,, k,, k,, as well as the location 
of four points of local maximum growth rates: 

A ,  class I point (I),, p,) with local maximum growth rate a,; 
B, the secondary class I point (ps, qs) with local maximum growth rate as; 
C, class I1 point @,,, pII) with local maximum growth rate a,,; 
D ,  the secondary class I1 point (p;,, psi) with local maximum growth rate a;,. 
For the particular data of figure 2 (k ,h  = 0.35, koa ,  = 0.04) a,, > a, > usl > a;. 

These inequalities are by no means general, as will be shown in the sequel. 
Nevertheless, for most cases ,I1 > a;'. 

Figure 3 is a summary of the results for class I instabilities. Figures 3(a, b)  give 
the values of pI and qI respectively as functions of the water depth and wave 
steepness. The depth is expressed by th  k, h (the range covered is 0.357 < k, h < OO), 

and the wave steepness by Cokelet's (1977) e2, denoted here by E: (the range 
0 < eE < 0.7 is covered). 

The isolines in figures 3 and 4 were drawn using interpolation and are based on 
about forty computed data points, almost equally distributed over the figure domain. 
Figure 3 (c) is a plot of cry = max (aI, as) isolines. Note that for the region confined 
by the broken lines a; > aI (sometimes by a factor of three), whereas the opposite 
is true in the outside region. For the case where as > a,, p;  is in the range 1.05-1.30 
and qf = 0, which implies that the most-unstable mode is two-dimensional. 

The results for class I1 are given in figure 4. Note that for this case p,, is always 
0.5. Figure 4 ( a )  gives the values of qII, and a,, is shown in figure 4 ( b ) .  For the domain 
above the dashed line in figure 4 ( b ) ,  a,, > aF, which indicates that for this region 
class I1 instabilities may become dominant. 

The question whether the disturbances related to the highest value of a will 
dominate the physical process remains open, and awaits additional evidence. The 
authors hope that their current study of the long-time evolution of class I and class 
I1 instabilities will throw some light on this and on other relevant aspects of these 
important processes. 

Appendix 
The kernels in (2.9) are 

where 
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The interaction coefficients in (2.11) as as follows: 

Second order: 

V ( 1 )  

V ( 2 )  

0 , 1 , 2  = - 2 ~ - 0 , 1 , 2 - K , 2 , 0 ~  

0 , 1 , 2  = 2 ( ~ 0 , 1 , 2 -  V-0,Z.l- V-l,Z,O)$ 

Vp1.2 = 21 .0 ,1 ,2+  K : , 2 , 0 ,  

where 
5 , 1 , 2  = - ( - 9% )".kl+(y)']. 

s7c 2w0w1 

Third order: 

w?)l, 2 , 3  = 6, 2, -0.3- w-O, 1, 2 , 3 ,  

W t L 3  = w-0, -1, 2,  3 +  w 2 ,  3, -0,  -1 

K ? l , 2 , 3  = 2W-o,-1, - 2 , 3 -  w - 0 , 3 ,  -1, -2+ ~ - ~ , - 2 , - 0 , 3 - 2 ~ - 1 , 3 , - 0 , - 2 ~  

w(;t'l, 2 , 3  = K, 1, 2,  3 + wl, 2 , 0 , 3  

(A 3a) 

(A 3 b )  

(A 34 

(A 3 4  

- w2, -1,-0, 3- w-O, 2,  -1, 3- w-0,3, 2, -1- w3, -1, 2, -0 ,  

where 

- l w 2 w 3  %, 1 , 2 , 3  - -(-)' 647c2 wowl lkl k1l{ 2 lkl t h  lkll h + 2 lkll t h  lk I h 

--thIklhthlk~lh[o:+2+WQ+3+W:+2+w~+3]~. 1 (A 3e)  

9 

Fourth order : 

(A 4a) 

(A 4b) 

X(1) - 

X(2) - 
0 , 1 , 2 , 3 , 4  - - 0 , 1 , 2 , 3 , 4 + P O , l , 2 , 3 , 4 ~  

0,1,  2,  3 .4  - "0,4, 2 .3 ,  - l + P 0 , 4 , 2 , 3 ,  - 1 + " O ,  3, 2, -1,  4 + P 0 , 3 , 2 ,  - 1 , 4  

+ " 0 ,  2, - 1 , 3 , 4 - P 0 ,  2, -1 ,3 ,  4 - a 0 ,  - 1, 2 , 3 , 4  - P O ,  - 1 , 2 , 3 , 4 3  

X ( 3 )  - 
0,1,Z,3,4~tc0,3,4,--1,-2~~0,3,4,--1,-2~cL0,--1,3,-2,4~~0,-1,3,-2,4 

- 
aO, - 1 , 4 , 3 ,  - Z - P O ,  - 1 , 4 , 3 ,  - 2 + a 0 , 3 ,  - 2 ,  - 1 , 4 - P 0 , 3 ,  - 2 ,  - 1 , 4  

+"0 ,4 , -2 ,3 ,  - 1 - P 0 , 4 , - 2 , 3 ,  - l - a O ,  - 1 , - 2 , 3 , 4 + P O ,  -1, -2.3.49 (A 4c) 
X ( 4 )  - 

0 , 1 , 2 ,  3, 4 - -"O, -1,4, -2, -,-PO, - 1 , 4 ,  -2 ,3+"0 ,4 ,  - 2 ,  -3, - 1 - P 0 , 4 ,  -2 ,  -3, -1  

- - 
O10, -1, - 2 ,  - -3 ,4+PO,  -1, -2 ,  - 3 , 4  aO, -1, - 2 ,  4, - 3 + P O ,  -1,  - 2 , 4 ,  - 3 3  

(A 4 4  
X(5) - 

0 , 1 , 2 , 3 , 4  - - " 0 , - 1 , - 2 , - 3 , - 4 + P o , - 1 , - 2 , - 3 , - 4 '  

where 
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